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RESUMO
Neste trabalho objetiva-se o estudo da aplicagio de Redes Neurais ao problema

de modelagem de sistemas dindmicos ndo lineares. Este estudo também ¢ estendido 3
utilizacgdo das Redes Neurais como confroladores mas somente a nivel de
documentagdo bibliografica e niio de implementagio.

A proposta do trabalho € desenvolver duas redes que modelem dois sistemas :
um motor movido a gas natural € um dinamémetro hidraulico. Estes dois sistemas estio
inseridos numa pesquisa desenvolvida pelo IPT ¢ financiada pela FAPESP que visa a
diminui¢do da taxa de emissdo de poluentes em motores de combustio interna (MCT)
que utilizam gas natural como combustivel.

Tais sistemas sfo extremamente ndo lineares, e a modelagem de ambos através
de equacionamento fisico requer que sejam feitas diversas hipoteses simplificadoras
para que se possa desenvolver um modelo satisfatério. As Redes Neurais aparecem
como uma inieressante alternativa a esta tarefa pois sua estrutura permite que a
modelagem seja feita somente a partir das entradas e saidas dos sistemas, climinando a
necessidade de tantas hipdteses e simplificando bastante o trabalho,



CAPITULO 1 : MOTIVACAO, OBJETIVOS E ESTRUTURA DO
TRABALHO

1.1) MOTIVACAQ

O problema da poluicio nos grandes centros urbanos preocupa hoje toda a
sociedade. Uma das grandes fontes de poluigdo sio os gases de escape dos veiculos
automotores que circulam pelas cidades todos os dias. Monéxido de Carbono (CO),
hidrocarbonetos (HC), nitretos e nitratos (NOx), enxofre e particulados sélidos sio os
subprodutos da combustio interna dos motores que mais poluem o ar. A taxa de
emissdo de tais poluentes ¢ alta em fun¢io da natureza quimica dos combustiveis usuais
(lcool, gasolina ¢ diescl), ¢ também em fungio do processo de combustio por
compressio de alguns motores (em geral movidos a diesel).

A legislagdo ambiental vem se tornando cada vez mais rigorosa, principalmente
com respeito a emissdo de poluentes em motores de combustiio interna (MCI). Este
rigor tem estimulado a busca de motores mais modernos e a investigagio do uso de
combustiveis alternativos.

Uma alternativa energética que vem sendo largamente pesquisada é a utilizagio
do gas natural como combustivel para os MCL O gas polui bem menos que os
combustiveis convencionais. Devido 4 sua natureza quimica as taxas de emissio de
mondxido de carbono ¢ enxofre sio baixas. Além disso o processo de ignigdo é dado
por centelha, propiciando indices de emissdo despreziveis de particulados sélidos. O
grande problema em termos de poluigio do gas natural esta relacionado com a alta taxa
de emissdo de nitretos e nitratos (NOx), que ainda ¢ alta.

Diversas sdo as linhas de pesquisa relacionadas com a diminuicio da taxa de
emissdo de poluentes provenienies dos MCI, principalmente aqueles movidos a gis
natural. Uma dessas linhas € a busca por estratégias de controle a serem aplicadas nos
sistemas de injegdo ¢ ignigdo destes motores, visando manter a relagio ar-combustivel

ao redor do valor estequiométrico.



1.1.1) Catalisadores, relacio ar-combustivel e controle de injecio
A figura 1 nos mostra um representagio esquematica de um sistema de controle

de injegdo e ignicio num MCIL

UNIDADE DE | REGULADOR DE PRESSAD
CONTROLE yd
< E -
8 g 5 -—
g § § GAS
CATALIBADOR $ §
+ /

Figura 1 - Esquema geral de controle do sistema de injecio e ignicio

Conforme a figura depois que os gases sio queimados e saem da cimara de
combustio, cles sdo forgados a passar através de um catalisador para serem tratados
antes de expelidos para atmosfera. Para que este catalisador opere com maxima
eficiéncia, a relagio ar-combustivel da mistura que sai da camara deve estar no ponto
estequiométrico. O sensor lambda mede a relago ar-combustivel dos gases de escape ¢
informa este valor a unidade de controle, que por sua vez manda sinais de comando
para os sistemas de injecdo ¢ ignigao.

Muitas pesquisas t€m sido desenvolvidas & procura de tecnologias de controle
eficientes para estes sistemas de injegio e ignigdo (Cassidy et al., 1980; Jones, 1988;
Moskwa, 1993; Lopes, 1996). Este problema ja estid praticamente resolvido para os
motores operando em regime permanente, com diversas solugbes enconfradas na
literatura ¢ fambém disponiveis no mercado para carros de passeio. Nio existem no
entanto solugdes de controladores que sejam eficientes a nivel de regime transitério,

quando acontecem variagOes bruscas de rotagdo e torque. Isto porque o controle é todo



feito em cima de um mapeamento estatico que determina qual deve ser a quantidade de
gas injetado em fungiio do ponto de operagio do motor. Este mapeamento ¢ feito para
o motor operando em regime permanente. Mas quando o motor vai de um ponio de
operagdo para outro ele passa por um regime transitério, e ¢ neste momento que o
controle falha.

Um controle eficaz a nivel de transitério deve manter a relagio ar-combustivel
ao redor de 1% do valor estequiométrico, para nfio comprometer a eficiénecia do
catalisador. A figura 2 mostra como varia a eficiéncia do catalisador em fungdo da
variagdo no valor da relago ar-combustivel normalizada (A = 1).

L

8

o
0

EFICIENCIA DE CONVERSAQD (%

o 8 & 3

Figura 2 - Eficiéncia do catalisador em funcio da variacio da relagiio ar-
combustivel

O catalisador utilizado ¢ do tipo de trés vias (phﬁﬁa, paladio e radio), que oxida
0 HC ¢ 0 CO e reduz o NOx. Pode-se perceber pela figura como é drastica a queda de
eficiéncia do catalisador quando A foge do valor 1. No limite de 1%, a eficiéncia de
conversdo catalitica para o CO ¢ para o HC cai para 50%, ¢ no caso do NOx cai para
20%.

Nao havendo um controle eficaz no transitério a eficiéncia do catalisador nestes
instantes fica comprometida e os gases que s3o expelidos praticamente nio sdo tratados.
Este ¢ um problema de grandes proporgdes nos centros urbanos, uma vez que 08
veiculos passam a maior parte do tempo em regime transitrio, frenando e acelerando
devido a trifegos intensos, sinais de transito,etc. Quando falamos de Onibus os

transitorios s3o ainda mais freqiientes.



Existe ainda um outro problema relacionade com o transitério dado em um

MCI que ¢ o empobrecimento/enriquecimento momentineo da mistura, conforme haja

aceleragdo ou desaceleragdo. Este problema também pode ser atribuido ao atraso na
injegdo do combustivel no instanie do transitorio.

Esta deficiéncia nos sistemas de controle a nivel de transitério tem levado

institutos de pesquisa e empresas a estudar a fundo este assunto.

1.1.2) O IPT e o controle de injecéio

O IPT (Instituto de Pesquisas Tecnoldgicas) vem desenvolvendo uma pesquisa
com motores a gas natural. Esta pesquisa conta com a parceria da Mercedez-Benz ¢
com o financiamento da Fapesp. A pesquisa tem diversas linhas de agio, e uma delas,
na qual estd envolvido o Agrupamento de Sistemas e Controle, visa justamente estudar
o problema do controle do sistema de inje¢do do motor a nivel de regime transitorio.
Para a condugio deste estudo estdo disponiveis no Laboratério de Motores, um motor
de 6nibus movido a gés natural cedido pela Mercedez ¢ um dinamdmetro hidraulico
(freio dinamométrico). O dinamémetro fica acoplado ao eixo do motor ¢ serve para
simular condigbes de carga e rotagio ¢ para medir o torque fornecido pelo motor. No
sentido de estudar o controle de injegdo, um primeiro passo ¢ construir modelos

dinadmicos tante do motor quanto do dinamémetro.

1.1.3) Importancia dos modelos do meotor e do dinamémetro

O problema de controle a nivel de transitério da injecio de motores é
extremamente complexo ¢ como foi dito, ainda ndo possui nenhuma solugdo pratica
muito bem definida. Assim sendo ¢ de grande importancia que se possa avaliar o
desempenho de uma proposta de conirolador a nivel de simulagio, em fungdo da
simplicidade, rapidez, baixo custo ¢ capacidade de criar diversas situagbes diferentes
que um ambiente de simula¢3o permite.

Para criar este ambiente de simulag3o é necessirio o desenvolvimento de um
modelo dindmico da planta a ser controlada, no caso o motor a gis. O modelo deve
reproduzir com o maximo de fidelidade a dinimica do motor para que o projeto do
conirolador esteja o mais perto o possivel da realidade.

Existem ainda outras aplicagdes para este modelo, que sio

. Detecgdo de falhas do sistema fisico real. Se possuimos um modelo validado

em laboratorio, ou s¢ja que reproduz com um bom grau de fidelidade o motor real,



podemos periodicamente comparar as saidas do modelo e do motor para uma mesma
entrada ¢ havendo diferenga nas saidas isto significa que o motor estd apresentando
algum problema.

. Estimaciio de estados. Varidveis de estado que por alguma razio nio podem
ser medidas através de sensores podem ser estimadas a partir do modelo.

. Inversdo da planta. Esta estratégia permite que se desconsidere a parte nio
linear do sistema e desta forma linearizar o modeio.

O dinam6émetro hidriulico apresenta dinimicas muito lentas quando
comparadas com as dinimicas do motor. Esta diferenga torna as medigbes feitas pelo
dinarnémetro no transitério do motor pouco precisas ¢ pouco confidveis. Dai surge a
necessidade de construir o seu modelo, para melhor compreender a complicada
dindmica deste sistema. Podemos portanto reproduzir transitérios preestabelecidos com
erros conhecidos de medigdo (uma vez que possuimos o modelo do dinamdémetro ).

E de grande importincia salientar que o objetivo € que s¢ tenha, como
representagio da planta na malha de controle, 0 modelo do motor acoplado ao modelo

do dinamdmetro, constituindo um unico modelo dindmico.

1.2) OBJETIVO DO TRABALHO
A proposta de implementagio do trabalho ¢ a seguinte :

“Modelar 2 sistemas dinimicos nio-lineares, um motor a gas natural ¢ um dinamémetro
hidraulico através de Redes Neurais”.

1.2.1) Modelos fenomenoldgicos ¢ modelos via Redes Neurais

O TIPT ja conta com dois modelos fenomenologicos, ou secja baseado em
equagbes fisicas, do motor ¢ do dinamdémetro. Estes modelos ja foram até mesmo
acoplados um ao outro, de forma que se possui hoje um dnico modelo dinidmico
consolidado.

Neste trabalho propde-se o desenvolvimento de outros dois modelos utilizando-
s¢ uma abordagem diferente que sio as Redes Neurais. As razdes para isto sfo virias :

a) Os modelos existentes sdo baseados em equagdes fisicas. As redes neurais
sdo algoritmos matematicos. A legitimidade desta tentativa de modelagem estd na fuga
de um paradigma, ou seja, este trabalho abre uma frente de pesquisa em uma forma de
modelagem completamente diferente, ¢ que vem recebendo grande atengio da

comunidade ctentifica.



b) Tanto o motor a gas quanto o dinamébémetro hidraulico sio sistemas altamente
niio lincares. Este aspecto dificulta muito a modelagem por meio de equagdes fisicas.
Diversas hipoteses simplificadoras tém que ser assumidas, ¢ os modelos sio linearizados
para determinados pontos de operagdo restringindo suas alcancabilidades. A
modelagem via Redes Neurais ¢ uma alternativa interessante pois requer apenas gue se
conhega vetores de entrada ao sistema ¢ vetores de saida correspondentes iquelas
entradas. Isto elimina de uma certa forma a necessidade de tantas hipoteses
simplificadoras, que comprometem o0s modelos.

¢) Mesmo que a alcangabilidade de uma tnica rede ndo seja muito grande, a sua
simplicidade de modelagem permite que se monte diversas redes para diversos pontos
de operagao. Teriamos multi-modelos de redes, de forma que dependendo da entrada
chaveamos de um modelo para outro ¢ assim podemos ter a resposta desejada.

d) O que se pretende no fundo é plantar uma semente, que possa no faturo com
a continuidade do trabatho apresentar resultados até mesmo melhores dos que ji se
possui com os modelos fenomenolégicos.

e) Além da utilizagdo como modelos, existem muitas pesquisas feitas que
mostram a utilizagio de redes neurais atuando efetivamente como controladores. O
conhecimento agregado com a modelagem de sistemas pode muito bem ser utilizado
para implementagdo de redes como instrumentos de controle.

E importante frisar que utilizou-se como massa de dados os vetores de entrada e
saida dos modelos fenomenoldgicos existentes ¢ ndo dos sistemas fisicos reats. Isto foi
feito por uma questio de simplicidade na manipulagio dos dados € uma vez que a
estrutura de uma rede neural requer apenas os valores das entradas e das saidas € de se
esperar que uma modelagem bem feita utilizando-se dados de simulagdo implique em

um boa modelagem quando utiliza-se dados reais medidos em bancada de teste.

1.3) ESTRUTURA DO TRABALHO

No capitulo 2 sdo apresentados em detalhe os modelos fenomenoldgicos do
motor e do dinambémetro, que neste caso representam as plantas a serem modeladas.

No capitulo 3 faz-se uma revisio do conhecimento adquirido 2 respeito das
Redes Neurais.

O capitulo 4 descreve o processo de implemetagdo das redes.

O capitulo 5 traz os resultados de modelagem obtidos.



No capitulo 6 comenta-s¢ a utilizagio de Redes Neurais como controladores a
partir das bibliografias que tratam a respeito do assunto.

No capitulo 7 sdo mostradas as conclusdes do trabalho.

O anexo traz as listagens dos programas desenvolvidos em Pascal ¢ no Matlab,
acompanhadas de esclarecimentos sobre a estrutura e as fungées utilizadas.



CAPITULO 2 : MODELO FENOMENOLOGICO DO MOTOR A
GAS

2.1) EVOLUCAO DOS MODELOS

A modelagem da planta € o primeiro passo a ser tomado na implantagdo de uma

estratégia de controle. Na busca de confeccionar modelos de MCI que servissem para a
lei de controle diversos trabalhos apareceram desde 1960. Os pioneiros foram YU
(1960) e SHWEITZER (1966). No inicio estes modelos serviram basicamente como
auxiliares na analise de fendmenos relacionados com a dindmica do MCI
(homogeneizagio e indugio da mistura ar-combustivel, combustio, formagdo de gases
de escape, efc.), ndio servindo para a utilizagio na malha de controle em fungdo da
complexidade dos céalculos envolvidos.

Foi a partir de meados dos anos 70 que comegaram a aparecer modelos de MCI
realmente voltados para a implementagio do controle. Estes modeios eram em sua
maioria do tipo caixas-pretas, onde procurava-se determinar coeficientes de uma curva
a partir dos dados de entrada e saida, em geral através do método dos minimos
quadrados, curva esta que representaria a planta. O foco de estudo era o regime
permanente,

O maior rigor da legislagio ambiental americana foi um dos fatores que levou os
pesquisadores a direcionarem seus estudos para o controle a nivel de regime transit6rio.
Um exemplo deste aumento de rigor foi a criagio de ciclos de testes transitérios para
veiculos automotores urbanos por parte da EPA (Enviromental Protection Agency).

Os modelos tipo caixas-pretas ndo representavam bem o MCI no transitério, e
entdo a comunidade cientifica volta seus esforcos para analise dos fendmenos fisicos
envolvidos na dindmica dos motores, e portanto aparecem os chamados modelos
fenomenologicos. Uma das caracteristicas basicas de tais modelos é comsiderar os
fenbmenos caracterizados por parimetros concentrados, 0 que permite a solugdio das
equagdes em tempo real. Uma outra caracteristica inerente a quase todos os modelos
fenomenolégicos que foram desenvolvidos é a divisio em subsistemas, definindo um
aspecto modular. Assim sendo existem submodelos dindmicos para o escoamento do ar
sobre a vilvula borboleta, para o escoamento no coletor de admissio, para a geragio de
torque via combusido, para a dinimica rotacional e outros. O subsistema que mais fem

sido estudado nos Gitimos 20 anos é o do coletor de admiss3o.



O desenvolvimento destes modelos fenomenologicos requer que sejam
assumidas diversas hipoteses simplificadoras bem como que os modelos sgjam

linearizados para determinados pontos de operagio.

22) REPRESENTACAO DO MOTOR E AS  HIPOTESES
SIMPLIFICADORAS

A figura 3 mostra um representagio esquematica do MCI que foi modelado.
Considera-se que a montante da entrada de ar a pressio ¢ atmosférica € a temperatura é
ambiente. A valvula borboleta age como uma perda de carga e considera-se o
escoamento como sendo compressivel, unidimensional e isoentrdpico. O escoamento de
combustivel através da valvula borboleta é desconsiderado em favor do escoamento do
ar. O escoamento através do coletor de admissio é considerado unidimensional com
distribuigdes de pressdo ¢ temperatura uniformes ao longo de seu comprimento. A
geragdo do torque ¢ feita quando a mistura ar-combustivel ¢ admitida pelo cilindro e
inicia-se a sequéncia de quatro tempos do motor. Ao ser expelida do cilindro, a mistura
passa pelo coletor de exaustio para entdo atravessar o catalisador e ser jogada na

atmosfera.

GAS

\ BORBOLETA
AR

MOTOR &.0L COLETOR DE ADMISSAD
SEIS CLINDROS

\
=HOO000C

COLETOR
DE EXAUSTAD

PARA CATALISADOR

PARA, CATALISADOR

Figura 3 - Representacio esquematica do motor
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Nio se considera mudanga na qualidade do combustivel, ou seja no seu PCI
(Poder Calorifico Interior). Considera-se um motor pré-aquecido, onde nio existe

turbocompressor, intercooler ou recirculagio dos gases de escape.

2.3) O MODELGC DO MOTOR

Um modelo procura sempre definir uma relagio entre as entradas de um
sistema e suas saidas. Este modelo, de uma forma geral, relaciona as eniradas de ar ¢
combustivel no motor com os estados de saida relevantes para o estudo das emissdes,
que s30 pressdo no coletor e rotagdo (pois definem um ponto de operagio do motor) as
relagdes ar-combustivel na enirada e saida da cimara de combustio. A relagio ar-
combustivel na entrada da camara (Fi_in) serve como valor de referéncia para a
relagdo ar-combustivel na saida da camara (Fi_out). Todas estas saidas (pressio,
rofagdo, Fi_in e Fi_out) sdo utilizadas para alimentar a unidade de controle.

O modelo foi construido no ambiente do Simulink, que é um mddulo do

software Matlab (da Mathworks). A figura 4 mostra o esquema geral deste modelo :

ACELERADOR1 ‘.DED—'
O
RELAGCAO FI il
Fi_in

NA SECAQ
DA VALV. BORB.

MODELO DINAMICC
SIMULADOR DO MOTOR

RELACAO Fi . J
oo suhbR TAseon Foot

F
\*]
MBDA

Figura 4 - Visdo Geral do Modelo Dinamico do Motor

A variavel de entrada “acelerador” é um degrau, que significa uma variagio no
dnguio da borboleta de admissdo do coletor. Esta entrada representa a admissdo de ar

no motor.
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As variaveis de saida Fi in e Fi out s30 as relagbes ar-combustivel na entrada

do coletor de admissfo ¢ na saida, respectivamente.

O modelo ¢ subdividido em trés subsistemas, a saber :
. Subsistema do coletor de admissio ;
. Subsistema de combustio ;

. Subsistema da dinimica rotacional ;

Na figura 5 o bloco ceniral estd aberto, mostrando os trés subsistemas.

= | - RELAO FI
= 1. - ”s"e‘:.%%? NO SENSOR

LAMBDA  LAMBDA

SUBSISTEMA DO SUBSISTEMA DE

! £cndCOLETOR DE ADMISSAG COMBUSTAO
r
Feni
*aFR~]
Fend SUBSISTEMA DA
Prod.[ " ! DINAMICA ROTACIONAL
RELACAO FI
NA ka\? BORB,

Figura 5 - Trés Subsistemas do Modelo do Motor

2.3.1) Subsistema do Coletor de Admissido

Este subsistema modela basicamente trés escoamentos :
. escoamento do ar através da valvula borboleta ;
. escoamento do ar através do coletor de admissio ;
. escoamento do gas através do coletor de admissio ;

A figura 6 traz este subsistema em maiores detalhes.
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REHAGHU
Ar/Comb.
Estequiomeétric
(para Gés Natural)

70

gina:mic;dcol Comb/ar . 6':1!“
ombustive
Vazdo de Comb. .
Vazdo de {para o Subsistema E:DJ'” Fi
Combustivel de Combustiio) ) {para o
To Workspace1 Subsistema
[ }— de Combustio)

Posicao ? —{3 |
Angular da > ‘ _—’[z\ Vazdo de Ar

Borboleta DinAmTen oo Ar Pressio {na borboteta)

N t(,para [
N ubsistema
Velocidade de Combustso)
Angular

Figura 6 - Subsistema do Coletor de Admissio

Os escoamentos do ar através da valvula borboleta e através do coletor de
admissio sdo modelados pelo bloco “Dindmica do Ar”, conforme a figura 7 :

—»_ay |
Velocidade To Workspace2
Angular Vazi:r de
{valv. adm.)
Ncil*Veilrend. - ﬂ
M piITR*T 1
Prod
Gain o
sf_area ———p{w >+
a:;:lg}rﬁga area(alfa) Prod. Vaziio no coletor - Gain1
BN To Woarkspacet
Vazio de Ar
o NiSpats {na borboleta)
Pressdo
@ Marb(P) PRESSAQ 1
Lo RERESSO
‘ Integrator

Figura 7 - Modelo da Dindmica do Ar

Basicamente o que acontece neste bloco ¢ o seguinte :
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A vaziio de ar através da borboleta € fungfio do angulo de abertura da mesma ¢
da pressio no coletor. O seu valor é conseguido fazendo com que o angulo passe pela
fungdo sf area ( que retorna o valor da area da segiio transversal ) e com que a pressio
passe pela fungdio sf_press. Multiplica-se o resultado ¢ encontra-s¢ o valor da vazio.

A vazio de ar através do coletor de admissio € fungio da velocidade angular do
eixo ¢ da pressdo no coletor. Multiplicando-se a pressio pela constante K e pela
velocidade angular obtém-se o valor desta vazio.

A pressio no coletor, que é uma das varidveis de interesse no nosso estudo, ¢
obtida subtraindo-se da vazio de ar na borboleta o valor da vazio de ar no coletor,
multiplicando-se por uma constante K=RT/V e integrando-se este valor.

O escoamento do gas através do coletor de combustio é modelado pelo bloco

“Dinamica do Combustivel” ( figura 8 ) :

Tsm=0.03 s
T=0.04 s
y IR R N B Y.y, I
- Tsm.s+1
de Comprstivel Atraso de Comb.
(na borboleta) Suavizaciio Tra?ls‘ orte (na valv. adm.

Figura 8 - Modelo da Dinamica do Combustivel

Os Unicos fendmenos considerados para a dindmica do combustivel sio um
atraso de fransporte ao longo do coletor ¢ uma modificagio no perfil de entrada do gas
que pode ser encarado como uma suavizagdo do escoamento.

Perceba-se que aparece ai 2 outra variavel de entrada de interesse, que € a vazio
de combustivel. Neste modelo assume-se um carburador ideal, ou seja a vazio de
combustivel esta relacionada diretamente com a entrada de ar (representada pela

entrada degrau “acelerador”) atraves de uma formula matematica.
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Para cada um dos escoamentos citados existem hipdteses simplificadoras
mostradas a seguir.
. escoamento do ar através da vilvala borboleta

Hipoteses simplificadoras:  escoamento compressivel unidimensional e
isoentropico; ndo ha dissipagdo térmica; o didmetro do eixo da articulagio da borboleta
ndo tem influéncia sobre a dindmica do escoamento; a area da segdo transversal da
borboleta ¢ aproximada para uma circunferéncia.
. escoamento do ar através do coletor de admissio

Hipoteses simplificadoras: o ar se comporta como um gas perfeito.
. escoamento do gas através do coletor de admissio

Hipodteses simplificadoras: o escoamento do gis niio contribui na dindmica da

pressdo dentro do coletor.

2.3.2) Subsistema de Combustiio

Este subsisterna ¢ responsavel por fornecer o valor do torque produzido pelo

motor. Sua representagdo ¢ mosirada na figura 9.

1 > n
; D
{do Coletor Variable {para| a
de Admissao} TmsPon Demy Sensor Lambda)
- 1iu [..1‘ _{E
Fen Velocidade
5 j Angular
ux | .
Pressio Mux?Avango da Ignicio Retacional)
(da Dinamica (Funcdo da pressiio . IMux
do Ar) no colstor !
e relacdo A/C s e
Poder Calorfico fferior | E;::z:;': Cita 100
&Gas Natural
e ) i »{__ind
H To Workspace
Vazao ¥
de Comb, |_* Prod.
(g Je—q ~ Toraue
To Workspace2lgj Indicado
(para Dinamica
Rotacional}

Figura 9 - Subsistema de Combustio
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O torque ¢ fungio da vazio de gas, da rotagdo do eixo ¢ da energia especifica
do gas. A fungdo indi representa um mapa de eficiéncia indicada que esta relacionado
com a emergia disponivel que a combustio transforma em torque. A fungio ign
representa um mapa de ignicdo estdtico, que relaciona o avango de ignigio com a
rotagdo ¢ o torque.

Hipotese simplificadora: A eficiéncia indicada foi relacionada simplesmente com
o avango de igni¢io ¢ com a relaglio ar-combustivel, quando na verdade ela também

depende da rotagdo e da pressio no coletor.

2.3.3) Subsistema da Dinamica Rotacional

Este subsistema ¢ responsavel por fornecer o valor da rotagdo ( velocidade
angular), que ¢ uma outra varidvel de saida de interesse. A figura 10 mostra este

subsistema.

To Workspace2

Gain

integrador da
velocidade
angular

»_n_]

. To Workspace

¥ Velocidade Anguiar :

1 l(para o Subsistema de
Combustdo)

Figura 10 - Subsistema da Dindmica Rotacional
O torque fornecido pelo motor € subtraido dos torques provocados pela carga

externa e pelo atrito. O resultado desta conta € o torque total, que dividido pela inércia

total do sistema fornece a aceleragio angular. Vale ressaltar que este valor de inércia
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possuir o valor de 140 Kg.m’ ( correspondente a um veiculo de 10 toneladas em quarta
marcha ). Integrando-se a aceleragio angular obtém-se a rotagdo (velocidade angular).
Hipéteses simplificadoras : O torque de atrito bem como a carga { torque

externo ) sdo considerados fungdes lineares da rotagio.

2.4) A DINAMICA DO MOTOR

Para melhor compreender a dindmica do motor modelado, foi feita uma
simulago colocando como entrada de aceleragiio um variagio do 4ngulo da borboleta
de 75 a 80 graus ¢ observadas as varidveis de saida de interesse : pressio, rotagdo, fi_in
e fi_out. Como j4 foi mencionado, a outra entrada de interesse ( vazio de combustivel )
¢ definida a partir da entrada de ar a partir de uma equagio matematica, Os resultados

desta simulagdo s3o mostrados a seguir, nas figuras 11 e 12.

ENTRADAS
Entrada degrau - Variagéo no angulo da borboleta
80 T T ¥ T T T T T T
79+
)
S 78F
(2]
k-3
ST
ot
Lo
76+
750 1 2 3 4 5 6 7 8 9
tempo(seg)
Vazéo de combustivel
0.01 6 I I T T T ] ! 1 T
2 0.0155
g :
g /ﬁ
g 0.015
(&
«
N0.0145F
> \
e 40 1 2 3 4 5 6 7 8 9
tempo(seg)

Figura 11 - Entradas de simulacido para o modelo do motor
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SAIDAS

x10* Press&o no coletor Rotagéo do eixo
9.5 . 2600 -
= 9 f S 2500(
¢ :
85 82400
g g
B o]
8/ & 2300 [
"5 5 10 22005 5 10
tempo(seg) tempo(seg)
Fi_in Fi_out
2 : 1.5 :
1.5}
1 T
1
05
05
0 - 0
0 5 10 0 5 10
tempo(seg) tempo(seg)

Figura 12 - Saidas do modelo do motor para a simulagio feita



CAPITULO 3 : MODELO FENOMENOLOGICO DO
DINAMOMETRO

O papel do dinamémetro ou freio dinamométrico no projeto do motor 4 gis &
oferecer condigBes para que se simulem situagdes de carga(torque) ¢ de rotagdo, fixas
ou varidveis, para o funcionamento do motor. Ou seja, tenta simular no laboratério,
condigbes reais de operagdo de um motor, como por exemplo, subidas e descidas,
desde as mais suaves até as mais ingremes.

O freio dinamométrico Schenk, modelo D360-2 como a maioria dos existentes
no mercado apresenta dindmicas lentas quando comparadas a do motor a ele acoplado.
Deste modo ¢ dificil precisar ¢ medir 0 momento das variagdes dos pardmetros de
pesquisa.

O estudo do controle destas variagdes, ou seja, a busca pelo conhecimento das
dindmicas envolvidas no transitorio exige que o dinamémetro, bem como todos os
demais equipamentos acoplados aos motores, tenham suas caracteristicas conhecidas
em detalhes. Assim, faz-se necessdrio ¢ levantamento de modelos dinimicos que
simulem ¢ reproduzam os transitorios preestabelecidos com erros de medigdes
conhecidos.

Entretanto, antes de mostrar o modelo do dinamémetro, convém apresentar o
funcionamento do dinamémetro (figura 13), para uma melhor compreensdo das
variaveis e fungdes existentes no modelo.

A 4gua enira (2) e se dirige s cimaras de turbilhonamento(3) através de
orificios existentes no estator(6). Nessas cimaras ocorrem redemoinhos de agua
provocados por um rotor (4) e consequente frenagem do eixo do motor; Ja que o eixo
se encontra parcialmente mergulhado na igua da camara.

A energia despendida na frenagem se transforma em calor, A agua absorve o
calor ¢ sai por fendas existentes no estator e rotor; passa, entio, pelo sistema da valvula
¢ finalmente escoa para o sistema de drenagem. Verifica-se, portanto, que a agua além
de funcionar como fluido de frenagem, funciona também como fluido de refrigeragéo.

A pressio ¢ o pardmetro de comando do dinamémetro, ou seja, ©
turbilhonamento da camara provoca um aumento da pressdo. Para voltar 3 condi¢io
estipulada de vazio constante, a vélvula borboleta(11) deve ser aberta para que

Jjuntamente com o pistdo(12) atue de forma a manter a estabilidade do sistema.
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De fato, para condigdo de velocidade ou vazio de entrada constante, o torque
resistivo que o dinamometro oferece depende do nivel de enchimento das cAmaras de
turbilhonamento, sendo que o nivel é regulado pela vilvula borboleta e pelo pistio que
se encontram i saida das camaras de tuwrbilhonamento. Quanto mais cheio a camara
maior o torque resistivo imposto ao eixo. Pode-se afirmar, portanto, que para uma
rotagio de referéncia estipulada, o nivel de agua estabelece uma carga(torque) ao eixo.

O conjunto vélvula/pistio & controlado por um PID que aciona um
potenciémeiro de valor real coneciado a um motor responsavel pela abertura da saida
das cdmaras de turbilhonamento.

O PID ¢ acionado ¢ informado através da realimentagio proveniente do sinal de
rotagdo do transdutor de rotagio para o caso de operagdo rotagio de referéncia ou sinal
de forga(célula de carga) para o0 modo torque de referéncia. A‘carga resistiva necessaria
deve ser estabelecida pelo PID, portanto, a partir das curvas de referéncia ¢ da curva

caracteristica do motor.

1-Eixo; 2-Entrada de dgua; 3-Cémara de turbilhcnamemno; 4-Rotor;
$-Carcags; 6-Estator, 7-Flange de acoplamento; 8-Correis de
acicoamento; 9-Motor de acionamenio ds vilvula; 10-Eixo de
acoplamento;, 11-Vilvuia borbolets; 12-Pistio; 13-Gans, 14-Base
do dinamérmetro; | 5-Transdutor de rotagdo.

Figura 13 - Esquema geral do dinamdmetro
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3.1) O MODELO DO DINAMOMETRO

O modelo do dinamdmetro referente ao sistema dindmico apresentado acima é o

descrito a seguir, na figura 14.

w cte ou
[ 1« ﬁ‘— Torque cte
Switeh ‘_@_
Ampl2
Torct;ue
motor
fog:enta em
e Carga / 100 fu} |fungdo Torque
[ * Praduct IZA:I
» X = ‘éxﬂ?)u
= Ox+
£ Sum3 Y x. .
] Inercia
Torg. Hidr.
o5 > caforea |
Volume celula de
lf < Torg. Hid. Carcaga forga
pli]ressao Pressao A
¢—— I

Clock  Tempo

Figura 14 - Modelo fenomenelogico do dinamdmetro

Existem dois modos de operagdo: Torque constante ou rotagdo constante.
Seguindo pela esquerda dos blocos referentes a torque e rotagio constante tem-se ©
bloco do PID, este € responsavel por controlar a maior ou menor vazio da camara de
tarbilhonamento a partir da curva de referéncia exigida ¢ da curva do motor existente, ¢
deste modo estipular uma carga resistiva na saida do sistema.

A saturagdo existente logo a seguir refere-se a abertura da valvula borboleta
entre 0 e 90°.

A Valv.Pistio regula a vazio na saida Qs. A diferenga vazio de entrada ¢ vazio
de saida ¢ que estipula o nivel de 4gua na cimara de turbilhonamento que pode ser lido
por dR. Dependendo do nivel, o dinambémetro oferece um valor de torque para o eixo
do motor.

O torque hidraulico do eixo proveniente da cdmara de turbilhonamento é

associado a porcentagem de carga do motor e estabelece o torque recebido pelo motor.
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Caso esiejamos operando no modo torque de referéncia, o torque hidraulico é
avaliado juntamente com o torque proveniente da inércia da carcaga e enviado para a
saida através da célula de forga que vai realimentar novamente o sistema.

No bloco pressio estipula-se a pressdo dinimica da 4gua na cimara de

turbilhonamento.
AP = pe*RuAR

O bloco torque hidrulico do motor transmitido a carcaga pela 4gua ¢:
T. = pR> @*2TRMAR,

onde R- raio mterno da carcaga

1 ‘E_
in_1
Products
Fperm/p2
2 L
in_2 v
fiuy 14—
u*abs(u)
y
> - > Bat. (i) [l I 'k
Sum1 Batente
g atenuador (k) Il
g
Xptod
xpto

Figura 15 - Bloco Valv. Pistido
O bloco Valv.Pistdo contém a equagio referente & pressdo na cimara interna do
pistio.

P2 = P1 - 9.06€5% 10/ Xpt0/
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No bloco Fperm/p2 encontramos formulas referentes a pressio na saida da
valvula borboleta € a forga permanente que representa a reagdo a forga que o pistio

provoca na agua causadora da mudanga de dire¢io do escoamento,
Pr=PICVAV2Z/(Fx)ICLAY

onde:
p1 € a press@o na entrada da valvula borboleta
F(x)=[1-(4C4 AX)Y VFo(%)
Fa(x)=1-(4 CoA(X)/D"n)’
CyA, = [0.78(1-cosct)/1-0.78(1-coso)|nD*/4
sendo o a posigdo angular da borboleta
CvAy € a area equivalente de escoamento pela valvula borboleta
F(x) e Fy(x) sdo fungdes auxiliares, associadas a perda de carga no orificio de saida
Fpem = [7D/4 + 8F(x)/ nD%4 - C4A(x)2c0s(69°VF o(X)]Ip:

No bloco QsP2 esta modelada a equagdo que rege a vazio através do orificio

de saida, considerando pressdo atmosférica nula.
Qs = CaA(X)N2p/p) /[1<4Cy/nD" AX))'T”

onde C, ¢ o coeficiente de descarga do orificio nas condiges de escoamento da agua

A(X) ¢ a area de passagem pelo orificio, definida pela posigdo x do pistdo

D ¢ o didmetro do pistdo

Dentro do bloco valv. pistdo encontramos uma saturagio que se refere a
limgtagdo de percurso do pistio.

Todas as formulas citadas acima podem ser encontradas no artige sobre
MODELAGEM E SIMULACAC DE UM FREIO DINAMOMETRICO
HIDRAULICO escrito pelo Agrupamento de Sistemas de Conirole ¢ Agrupamento de
Motores do IPT, ver Referéncias bibliograficas.
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3.2) DINAMICA DO DINAMOMETRO

Serdo demonstradas a seguir algumas simulagdes feitas com este modelo para
uma idéia de sua dindmica. Estes mesmos graficos podem ser mais tarde comparados
com as saidas dos modelos de redes neurais. A figura 16 refere-se a entrada dada ao
sistema ¢ as figuras 17,18 ¢ 19 referem-se 3s respostas do modelo.

Condigdes iniciais:

- Carga do motor: 100%

- Vazio de entrada; 0,3 Vs
- Rotagio inicial: 700 rpm
- Rotagio final: 1600 rpm
- Tempo: 70 s.

- Transitorio: 30 a 40 s

Rotacé&o de referéncia(RPM) - modo rotagao cte
1600 i [ . ; . i 7

1500

1400

1300

I
1

1200 q

rotacdo(RPM)
Q
o

1000 _
800+ 4
800+ J
700 ]
6000 1I0 2I0 3b 46 5|0 6{0 TIO 80

tempo(seg)

Figura 16 - Entrada de simulagdo ao modelo do dinamémetro
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Rotacéo no eixo de saida(RPM)
1800 : T T . . T T

1600

1400

rotagao(RPM)
X
Q
=]

1000

800

600 | 1 L] 1
0 10 20 30 40 50 60 70

tempo(seg)

Figura 17 - Rotacéio
Nota-se que a curva de resposta do modelo, segne bem a curva de referéncia
exigida para a rotagio. Com uma excelente aproximagio, mesmo no regime transitorio.
Tal rotagio de saida se refere a resposta do eixo quando & variado pelo usuério

o0 potencidmetro do dinamoémetro.
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Variag&o do angulo da vaivula

75 T 1 1 T I | T

70

60

angulo(graus)
IS o) n
(] =) b3

40

35

T

30

25 ] | I ! 1 1

0 10 20 30 40 50 60 70
tempo(seg)

Figura 18 - Variagiio no dngulo da vaivula (alfa)

Para o aumento de rotagdo o que era de se esperar era o fechamento da valvula
borboleta para manter a vaziio de saida de 0,3 Us. Isto foi verificado.

O pico proximo a 30 seg. se refere ao regime transitério, onde ha uma variagio

da valvula até conseguir se ajustar adequadamente.
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Espessura do filme de 4gua na camara
0-01 6 T I T 1 T I 3

W i
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Figura 19 - Espessura do filme de 4gua na cimara de turbilhonamento

Os exemplos mostrados acima sdo algumas vaniaveis que podem ser obtidas do
modelo do dinamémetro.

Apesar da alta ndo linearidade do sistema, o modelo responde bem as exigéncias
a ele atribuida, e deste modo, permite a compreensio de aspectos importantes da
dinamica do dinam6metro, inclusive no regime transitdrio.

Espera-se que se a rede neural implementada reproduzir bem as curvas do
modelo, provavelmente ela também reproduzira bem as curvas do dinamometro real, ja
que o modelo implementado apresenta uma reprodugio bem proxima do existente na
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e Em 1982, John Hopfield, apresentou um "paper" para a National Academy of
Sciences. Utilizando de seu prestigio ¢ carisma, ele apresentou uma combinacgio de
elementos interconectados em "layers" que resolvia os problemas insoliiveis citados
em 1969; deste modo, trouxe de volia o interesse pelo estudo de redes neurais ¢

tambeém 0s incentivos ¢ patrocinios para o desenvolvimento da area.

Os fatos descritos servem para se ter uma nogio dos altos ¢ baixos momentos
ocorridos durante o estudo de redes. Hoje em dia a rede neural estd em alta ¢ muitas
pesquisas vem sendo realizadas nas mais diversas dreas. A curiosidade ¢ mesmo
utilizagdo como ferramenta auxiliar tém proporcionado um grande investimento pessoal

em variados campos de pesquisa.

4.2) FUNCIONAMENTO BASICO

O cérebro humano ¢ um dos objetos de estudos mais complexos €
desconhecidos pelo homem. Sua capacidade de calcular, lembrar ¢ solucionar
problemas tem instigado o homem a tentar imita-lo .

As redes neurais, obviamente, estio muito distantes dos neurdnios reais;
entretanto a forma permite realizar uma analogia entre eles,

Para uma methor compreensdo desta ferramenta € sua analogia com o real, &
necessario conhecé-la melhor.

A seguir sera explicado como utilizar a rede neural como ferramenta de
modelagem de sistemas reais existentes. E conveniente salientar que esta nio ¢ a tinica

aplicagdo para redes, e sim, uma das diversas possiveis.

Seja a seguinte situagio:

r SISTEMA ]
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Um sistera com vetor de enfrada r ¢ vetor de saida s.
Deseja-se que a rede neural comporte-se exatamente como este sistema.
Assim sendo, fornecendo a mesma entrada r para a rede neural, ela deve

fornecer uma saida s' muito parecida e proxima de s.

—
r REDE NEURAL s’

]

A seguir sera mostrado o que existe dentro do bloco "rede neural”, para melhor
compreensdo de como fornecer saidas préximas as desejadas utilizando as mesmas
entradas.

Na figura 20a. pode-se ver o chamado neurénio:

As entradas 1y, 13, ra... sio multiplicadas por pesos w;, Wz, Wa..., € somados com
um bias, ou seja, rnw, + 1, Wy + r3Wa...+ bias, este resultado passa por uma fungio de
transferéncia e fornece uma saida.

Podem existir diversos neurdnios dispostos em uma coluna. E o chamado layer
ou camada(figura 20b.).

Um segundo neurdnio logo abaixo do primeiro "pegaria” as mesmas entradas s6
que existiriam novos pesos e bias,
A fungdo de transferéncia normabmente é a mesma para todos os neurdnios,

entretanto pode ser diferente.
Pode haver mais de uma camada, onde a entrada da segunda camada serd a

saida da primeira.

O conjunto de neurdnios ¢ camadas € o que se chama rede neural (figura 20c.)
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NEURONIO

Inputs  General Neuron

NS \
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P{3)
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s
a=F (w*p, b}

Figura 20a - Neurdnio

CAMADA DE NEURONIOS ( LAYER)

Inputs Neuron Layer

a=F (W*p+b)

Figura 20b - Camada de neurdnios

REDE NEURAL
Inputs Neuron Layer 1 Neuron Layer 2 Neuron Layer 3

ni{1) atf1) w21, 1) a2{1) waqt,:

al=F1{Wi1=p+bt) a2=F2 (W2=a1+b2) a3=F3(W3*a2+b3)

a3=F3 (W3*F2{W2*F1(W1*p+b1)+b2)+b3)

Figura 20c - Rede Neural
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Até agora foi comentado sobre a estrutura da rede neural, a seguir, sera descrito
como um conjunto de contas e fungdes matematicas fornece uma saida proxima a
descjada.

Isso ¢ feito através do treinamento ou aprendizado de uma rede, ou sgja, €
forecido para a rede, a entrada e saida do sistema.

A rede "pega” a entrada como visto acima, e fornece uma saida. A saida da rede
¢ comparada com a saida do sistema, a diferenga é o erro.

Este erro passa por um algoritmo de aprendizado que modifica os valores dos
pesos ¢ do bias, fornecendo uma nova saida. A nova saida ¢ novamente comparada, € 0
novo erro passa pelo mesmo algoritmo ¢ fornece novos pesos ¢ bias. Diversas iteragdes
ocorrem até que o erro s¢ja menor do que o estipulado, ou seja, o erro é considerado
aceitavel.

Quando este processo termina, pode-se dizer que a rede "aprendeu”, ou entdo,
ela esta treinada.

Desse modo, se for fornecido uma nova entrada diferente das usadas para o
freinamento, a rede neural fornecers uma saida que devera ser a mesma que o sistema
forneceria.

Uma melhor aproximag3o, ou entfio, iteragdes mais rapidas podem ser obtidos
alterando os diversos componentes de uma rede neural: nimero de camadas, numero
de neurdnios, algoritmo de aprendizado, fungio de transferéncia, pesos e bias iniciais,
ou mesmo, pontos de operagio dos vetores de entrada e saida.

As caracteristicas de cada uma delas vai ser visto a seguir.

Numero de Camadas

Sera usado no trabalho, uma rede neural com duas camadas. Ja que o sistema €
altamente nio linear, ¢ uma camada nao ¢ suficiente.

Esta escolha é baseada no teorema de Kolmogorov, que diz que duas camadas
sdo suficientes para mapear um vetor de entrada de dimens3o n num vetor qualquer de

saida de dimens3o m, portanto mais que duas € desnecessario.

Nimero de Neurdnios

O mesmo feorema de Kolmogorov, diz que para um vetor de entrada de

dimensdo n, 2n + 1 neurénios na primeira camada ¢ suficiente para realizar o

32



mapeamento num vetor de saida de dimensio m(na segunda camada devemos ter m
neurénios).

Dentre os 2n+1 neurdnios, pode-se testar se um neurdnio é descartavel ou nio,
da seguinte forma. Se este neurdnio for combinagio lincar dos demais neurdnios da
rede, aquele é um candidato a ser retirade da rede, ou seja, se a saida que ele produz
pode ser representado por uma combinagio linear das saidas dos demais neurénios, ele
podera ser retirado.

Lembrando que quanto maior for o nimero de neurdnios, mats tempo sera
gasto na simulagio da rede, sendo importantissimo, portanto o estudo de neurdnios

excedentes.

Algoritmos de Aprendizado
Convém ressaltar que, decidiu-se ufilizar o algoritmo de aprendizado back-

propagation, ji que este, segundo a literatura(manual do toolbox do matlab, por
exemplo) ¢ usado em aproximadamente 85% das aplicagdes praticas, pois ¢ uma
ferramenta muito poderosa capaz de mapear vetores de entrada em saidas para quase
todas as aplicagdes.
A figura 21 mostra um esquema simplificado deste algoritmo de aprendizado.
O Back-Propagation consiste em corrigir primeiro os pesos da ultima
camada(saida), para depois corrigir os pesos da primeira camada(camada escondida). A
figura 9 mostra a estrutura deste algoritmo, ressaltando como é feita a corregio dos
pesos.
Primeiro corrige-se os pesos da camada 2 (saida) a partir da formula :
AW =n.d"8
onde : AW = acréscimo feito a cada peso em cada iteragio
n = coeficiente de velocidade de aprendizado ( é um valor costante)
S = saida de cada neurdnio da ultima camada em cada instante
d" = (T-S).8.(1-S) ;T = Target ( saida desejada em cada instante )
A expressio do erro, dada por d° é entdio “back-propagada” para a camada 1
(escondida ), para que a correcio dos pesos desta camada seja feita :
AW =1n.d.8
onde : AW = acréscimo feito a cada peso em cada iteragdo

1 = coeficiente de velocidade de aprendizado ( € um valor costante)
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S = saida de cada neurdnio da @ltima camada em cada instante
d=Cd . WH.8.(1-8)

Fungdes de transferéncia

As fungdes utilizadas s3o a ‘tansig’, ou melhor uma tangente sigméide
hiperbdlica que mapea uma entrada que varia de um intervalo (-cc,+c0) para um
intervalo(-1,+1).

Seu uso € eficaz guando se usa como algoritmo de aprendizado o back-propagation.

Na segunda camada a fungiio utilizada é a purelin, E uma fungo linear que ¢
muito utilizado quando se treina uma rede com Widrow-Hoff ou com a back-
propagation. Esta fungdo simplesmente fransfere um vetor de entrada para a saida,
alterado apenas pela soma do bias.

As fungBes acima foram as que apresentaram os melhores resultados para estes
tipos de sistemas.

Pesos e bias iniciais

Verifica-se que aiém de estarem no intervalo{-1,+1), os pesos ¢ bias iniciais
dependem da combinagio entre eles. Uma boa combinagdo de pesos ¢ bias iniciais ¢

conveniente para melhor funcionamento da rede.

Pontos de operagio dos vetores de entrada e saida.

Durante a execugdo do programa verificou-se que é importante que este tipo de
rede seja treinada com entradas e saidas com a mesma ordem de grandeza.

Ao mesmo tempo, notou-s¢ que € interessante manter os vetores com uma
ordem de grandeza de 10™ . A nio utilizagio deste campo de grandeza para as fungdes

determinadas acima pode provocar a divergéncia da rede.

34



ﬁW I—J'W..fm lblu u¥4 d420 | S xcﬁ ..f- o "\

~2 OROWs oD

20,.4,%6nw069 V)OOAM—

Figura 21 - Back Propagation
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CAPITULO 4 : REDES NEURAIS

4.1) HISTORIA

A seguir um breve resumo do surgimento ¢ do desenvolvimento das redes

neurais até os dias de hoje.

e Em 1943, um neurobiologista, Warren McCulloch, € um estatistico, Walter Pitts,
publicam um "paper” entitulado "Um célculo Idgico de idéias eminentes na atividade
nervosa.” Este estudo serviu de inspiragdo para o desenvolvimento de diversos
campos como: Computadores digitais(John wvon Neumann), Inteligéncia
artificial(Marvin Minsky) ¢ perceptron{(Frank Rosenblatt).

e Em 1956, numa conferéncia de inteligéncia artificial, patrocinada pela fundagido
Rockfelier, ¢ discutido a potencialidade dos computadores de aprenderem. Nathanial
Rochester, da IBM research, apresenta uma rede neural que ele vinha
desenvolvendo. Apesar de Rochester ndo saber interpretar as informagdes ainda, este
foi o primeiro software de simulagdo de redes neurais conhecido.

o Em 1957, Frank Rosenblatt, publicou o primeiro grande projeto na area de
computagdo neural, o perceptron. Trata-se de um modelo(rede neural) capaz de
aprender, emitindo como saida valores com dois estado, binarios(1 ou 0) por
exemplo.

e Em 1959, Bernard Widrow, de Stanford, desenvolveu as chamadas Adaline e
Madaline. Widrow usou este algoritmo para desenvolver um filtro adaptativo que
eliminava ecos nas linhas telefonicas. Foi a primeira vez que um sistema neural era
aplicado em um problema real.

e A partir de 1960, Marvin Minsky ¢ Seymour Papert, do laboratério de pesquisas
eletrénicas do MIT, comegaram a desenvolver uma profunda critica ao percepiron.
No livro Perceptron, lancado em 1969, eles publicaram uma detalhada analise
matematica do perceptron. A conclusic era de que as redes neurais ndo eram
objetos interessantes de estudo; jA que ndo resolviam problemas como o
Exclusive(OR function). O resultado foi o decréscimo de fundos ¢

conseqilentemente pesquisas neste campo.
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CAPITULO 5 : O PROCESSO DE IMPLEMENTACAO DAS
REDES

Foi decidido trabalhar com o Tool Box de Redes Neurais do Matlab, que possui
diversas fungdes predefinidas de aprendizado ¢ de montagem de estrutura de rede. O
processo de implementagio foi bastante gradativo, ou seja optou-se por procurar
entender exatamente o que se passa dentro da rede neural, tanto a nivel de aprendizado
quanto a nivel de simulagfio antes de usar as fungdes predefinidas para modelar direto o

motor e o dinamémetro.,

5.1) PRIMEIRO PASSO : ALGORITMO EM PASCATL
O primeiro passo foi desenvolver um algoritmo de aprendizado de rede

utilizando linguagem Pascal com um objetivo sobretudo didatico. O sistema que foi
modelado nio tinha nenhuma relagio com o motor ou o dinamémetro, e foi retirado de
um exemplo do Matlab. Este sistema ndo era dinAmico ¢ nem tao pouco nio-linear. O
que se fez foi um simples mapeamento estatico a partir dos vetores de entrada e saida.
O algoritmo de aprendizado implementado tinha a lei de formag3o baseada num
algoritmo consagrado denominado “perceptron”.

Com esta tarefa pode-se adquirir uma noglio de como as varidveis de
aprendizado (valores iniciais de pesos e bias, coeficiente de aprendizado, niimero de
iteragdes, etc.) influenciam na convergéncia da resposta da rede.

Constatou-se¢ algumas afirmagdes da literatura, como o fato de que os pesos
iniciais nio devem estar fora do intervalo [-1,1] sob pena de nio haver convergéncia.
Outro aspecto observado foi que coeficientes de aprendizado menores, apesar de
diminuirem a velocidade de convergéncia, garantem respostas mais precisas.

A listagem deste programa encontra-s¢ no anexo, no final do trabalho.

5.2) SEGUNDO PASSO : IDENTIFICACAQ DE SISTEMAS LINEARES
DINAMICOS
Um sistema dindmico ¢ aquele cujos estados atuais dependem dos estados

anteriores ¢ das entradas anteriores.
Montou-se no ambiente do Simulink um sistema linear ¢ dinAmico bem simpies,

com apenas uma entrada ¢ uma saida, cuja saida dependia de duas entradas anteriores e
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de uma saida anterior , como mostra a figura 22.

(+18)
b &0l e

4 To Workspace
Pulse :
Generator9 Zero-Pole

FIGURA 22 - Sistema linear dindmico

A partir deste momento passou-se a utilizar os algoritmos de aprendizado
predefinidos do Toolbox de redes neurais. Foi construida uma rede de apenas uma
camada de neurdnios e o algoritmo de aprendizado escothido foi o chamado
“purelin”(puramente linear), que apresentou resultados bem satisfatorios.

Apds aumentar o namero de entradas e saidas, tanto o aprendizado quanto a
posterior simulagio continuavam a mostrar resultados satisfatdrios.

A nivel de aprendizado ndo houve problema. No momento de utilizar a rede
com uma ouira entrada qualquer, era necessario promover uma realimentagio, ou seja,
era preciso que a saida em determinado instante fosse utilizada como entrada em
instantes posteriores. Entrando no detathe do funcionamento da rede, foi montado um
programa no Matlab que utilizava toda matriz de pesos, todas as enfradas e todas as

saidas.Funcionou.

5.3) TERCEIRO PASSO : IDENTIFICACAO DE SISTEMAS NAO:
LINEARES E DINAMICOS
Ainda no ambiente do Simulink, foi colocado blocos de nio-linearidades

acoplados ao exemplo anterior, de forma a criar um sistema ndo-linear (figura 23).

+1. e |
M —» (s$1)(s?f)5) > Ry | P target |
i To Workspa
s Saturation Transport o rkspace
Generator9 Zero-Pole Delay

FIGURA 23 - Sistema niio-linear dindmico
Verificou-se ai um sistema que depende de uma entrada anterior ¢ de duas

saidas anteriores, cuja nio-tinearidade esta nos blocos de saturagdo {“saturation”) e de



atraso de transporte (“transport delay”). Grande parte das experiéncias foram feitas em
cima deste exemplo, mudando o tipo de entrada, as constantes, os tipos de nio-
linearidades, etc.

Verificou-se que um rede com apenas uma camada de neurdnios ¢ treinada com
o algoritmo “purelin” n3c era capaz de aprender. Como recomendava a literatura,
montou-se uma rede com 2 camadas e submeteu-se esta a um algoritmo de aprendizado
chamado de back-propagation. Os resultados de aprendizado foram muito bons, ou seja
para aqucla mesma entrada a resposta da rede bem a resposta do sistema. Entretanto a
rede ndo conseguia reproduzir corretamente a resposta a uma entrada de formato
diferente daquela para a qual ela foi treinada.

O gue ocorria, na verdade, ¢ que foi superestimado a capacidade da rede. A
rede foi ensinada com uma entrada senoidal e havia a expectativa que ela fosse capaz
de responder bem a um degrau por exemplo. O problema encontrava-se no dominio da
frequéncia: uma sendide excita apenas uma frequéncia, enquanto que um degrau excita
algumas. Descobriu-se que um bom sinal de entrada para aprendizado seria um ruido
branco, que ¢ capaz de excitar varias frequéncias. Foi feito entdo o treinamento da rede
com um ruido branco e ela foi capaz de reproduzir com boa precisdo a resposta de
entradas senoidais, degraus, impulsos, trem de pulsos, etc.

Acrescentou-se um ruide numa entrada degrau utilizada para aprendizado ¢
verificou-se que desta forma a rede conseguia acompanhar bem as respostas para outras
entradas degrau de tamanhos diferentes.

A partir daquele momento tudo estava preparado para realizar a implementagio

das redes que iriam modelar o motor ¢ o dinamémetro.

5.4) QUARTO PASSO : MODELAGEM FINAL DOS MODELOS DO MOTOR
E DO DINAMOMETRO

5.4.1) ETAPA 1 : Definicio das variaveis de entrada e saida que se deseja
modelar
MOTOR
Entradas : Aceleragdo ou variagdo no angulo da borboleta ( entrada degrau )
Vazio de combustivel
Saidas : Pressdo no coletor

Rotagdo do eixo
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As duas entradas representam a admissio de ar ¢ combustivel no motor. As
duas saidas definem o estado do motor durante e depois do transitério, ou sejam
definem o ponto de operagdo. Sdo saidas relevantes pois a unidade de controle precisa
desses valores para confrolar a relagao ar-combustivel.

No momento do aprendizado a entrada degrau (aceleragio) € acrescida de um
ruido branco, o que permite que a rede responda satisfatoriamente a degraus de entrada
de intensidades diferentes.

DINAMOMETRO
Entradas : Perfil de rotagdo (entrada degrau)
Saidas : Rotagdo
Nivel de 4gua na cdmara de turbilhonamento -
Abertura da valvula borboleta -
A entrada degrau ( perfil de rotagdo ) é acrescida de um ruido branco pela

mesma razdo explicada anteriormente para o motor.

5.4.2) ETAPA 2 : Definicio da estrutura das redes
MOTOR

Definiu-se uma Onica rede neural capaz de reconhecer as duas saidas desejadas
(pressdo e rotagio).

Numero de camadas de neurdnios : 2

Numero de neurénios da primeira camada : 8. Chegou-se a este numero de uma
maneira empirica, realizando diversos aprendizados com diferentes nimeros de
neurdnios.

Namero de neurdnios da segunda camada : 2. Este nlimero esti relacionado
com o numero de saidas da rede, que sdo duas.

Fungdo de transferéncia da primeira camada : tansig.

Fungdo de transferéncia da segunda camada : purelin.
DINAMOMETRO

Definiu-se trés redes neurais, uma para cada tipo de saida (rotagdo, nivel de
agua e angulo da borboleta).

Todas as trés redes apresentam duas camadas de neurénios, 1 newrdnioc na
segunda camada ¢ fungbes de transferéncia tansig e purelin para a primeira ¢ segunda

camada respectivamente.
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A diferenga esta no niimero de neurdnios da primeira camada. Para a rede 1

(rotagdo) o niimero de neurdnios € 6. Para as outras duas o nimero ¢ 5.

5.4.3) ETAPA 3 : Defini¢iio do algoritme de aprendizado
O algoritmo utilizado foi uma variagdo mais veloz do backpropagation,
chamado de Levenberg-Marquardt.

5.4.4) ETAPA 4 : Defini¢cdo de quantas entradas e saidas anteriores deveriam ser
informadas para o treinamento das redes

Ambos os sistemas sio dinimicos { estados atuais dependem de estados ¢
entradas anteriores ). Este aspecto deve ser considerado quando informa-se para a rede
as enfradas ¢ saidas de aprendizado. Deve-se informar, além das entradas e saidas
atuais, entradas e saidas atrasadas no tempo para que a rede reconhega a dindmica do
sistema.
MOTOR

Informou-se 3 entradas anteriores € 3 saidas anteriores.
DINAMOMETRO

Rede 1 (rotagdo) - 4 entradas anteriores ¢ 4 saidas anteriores

Rede 2 (nivel de agua) - 3 entradas anteriores € 3 saidas anteriores

Rede 3 (dngulo da valvula de saida) - 3 entradas anteriores e 5 saidas anteriores
Assim como o numero de neurdnios da primeira camada, os valores de atraso
das entradas ¢ das saidas também foram determinados de forma empirica, através de

tentativas.

As listagens dos programas de aprendizado e simulagdo das redes encontram-se
em anexo no final do trabalho.
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CAPITULO 6 : RESULTADOS OBTIDOS

6.1) MOTOR

Treinou-se a rede para um degrau de variagdo de 75 graus a 80 graus no angulo
da borboleta.Os grificos mostram uma comparagio entre a resposta do modelo ¢

resposta da rede, para varias entradas degraus diferentes.

Griafico 1) Entrada degrau de 75" a2 80° (Degrau para cima)
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Grafico 2) Entrada degrau de 75" a2 85° (Degrau para cima)
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Grifico 3) Entrada degrau de 75" 2 90° (Degrau para cima)
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Grifico 4) Entrada degrau de 80° a 75° ( Degrau para baixo )
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Grifico 5) Entrada degrau de 85° a 75" (Degrau para baixo)
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Grifico 6) Entrada degrau de 90° 2 75° (Degrau para baixo)
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6.2) DINAMOMETRO

Treinou-se as trés redes para um degrau de variagdo de 700 rpm a 1600 rpm na

rotagdo de referéncia. Os grificos mostram uma comparagdo entre a resposta do

modelo e resposta da rede, para varias entradas degraus diferentes.
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Grafico 8) Entrada degrau de 700 rpm a 1650 rpm
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Grifico 10) Entrada degrau de 700 rpm a 1900 rpm
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CAPITULO 7 : CONTROLE ATRAVES DE REDES NEURAIS

Aqui serdo tratadas propostas ou idéias para a realizagio do controle da relagio
estequiométrica (fi). Notem que estas idéias ndo foram implementadas e sdo baseadas
em literaturas existentes no mercado. Espera-se que o tdpico em questio sirva de base
para eventuais tentativas de conirole por redes neurais pariindo dos modelos aqui
apresentados.

Comenta-se que a rede neural tem apresentado resultados bem satisfatorios no
que se refere ao aprendizado de sistemas extremamente nio-lineares ¢ também para
casos nos quais existem atrasos de tempo significantes devido aos sensores do sistema.

A tentativa de controle por redes neurais estd baseada no fato de que pode-se
obter o controle do valor estequiométrico em tempo real,

O objetivo do controle da relagdo ar-combustivel ¢ manter a relagio dentro de
um campo de variagdo de mais ou menos 1%; ja que, para uma variagio de 1% a
eficiéncia do catalisador ja decai aproximadamente 50%.

Sera agora comentado um estudo feito nesta area.

Ja existem varios testes com redes neurais; um deles, é o chamado
CMAC(Cerebellar modelo articulation controller) que ¢ usado como um controle
adaptativo da relagiio ar-combustivel. Este estudo possui as seguintes nuingcias.

Existem n entradas, para cada relagio das entradas com os pesos fala-se que ha
uma localizagdo C.

Podem os pesos se relacionarem com as mesmas entrada, produzindo uma
correspondéncia C.

A resposta da saida ¢ a soma dos pesos referentes as entradas ativadas, ou seja,
as entradas existentes nfio se correspondem com todos os pesos. SO aqueles pesos que
possuem correspondéncia com entradas sio considerados.

A possibilidade de mesma entrada com mesmos pesos se multiplicarem vérias
vezes proporcionando uma saida similar € o que s¢ chama de generalizagio local.
Mesmo que o CMAC seja treinado sob condigbes especificas, a rede consegue
aprender mais do que foi estipulado no treinamento.

O algoritmo de aprendizado envolvido com esta rede é

Aw=P;(d-y)/C
onde PB; ¢ a taxa de aprendizado que varia de -1 al



O ajustamento on-line permite modificar pesos a medida que o sistema é
alterado.

A idéia de controle deste tipo de rede é que a rede recebe a mesma entrada do
sistema. Para saidas diferentes o erro ¢ corrigido. Todas os campos de hipoteses sdo
cobertos, até o momento que a partir de uma entrada a rede sabe quanto que vai ter que
fornecer na saida para nio existir erro. Ou seja, a partir do momento que tenho pesos
fixos a rede preveé o possivel erro a partir da entrada.

Em suma, os modelos servem para estipular os diferentes erros para as diversas
entradas. As entradas do controlador sdo as mesmas da rede, a saida do controlador é
o valor necessario para corrigir o erro; sendo que o erro € a diferenga entre a saida do
modelo € a saida ideal.

Espera-se que apos serem fornecidas ao controlador diversas entradas com as
respectivas saidas, a rede neural referente ao controlador “aprenda” ¢ para uma entrada
diferente das usadas para treinamento o controlador seja capaz de prever o valor que
deve ser fornecido para a planta corrigir o erro. Ou seja, a corregio € feita on-line sem
a necessidade de realimentaggo.

A realimentacao s6 € necessaria a nivel de treinamento, ou seja, comparar saidas
da planta ¢ saidas ideais ¢ s6 entfio, fazer a correglio é importante apenas até a rede
aprender o sistema. A partir dai a rede antevé o valor a ser corrigido para uma
determinada entrada.

Nota-se que para a execugdo desta idéia, ndo é necessério utilizar o algoritmo de
aprendizado citado acima. Convém inclusive utilizar uma algoritmo conhecido,
podendo ser inclusive o back-propagation. A citagio do algoritmo usado na CMAC foi
apenas com o propdsito de citar um tipo de pesquisa que estd sendo realizado. Espera-
se que resultados satisfatorios sejam obtidos com algoritmos de aprendizado mais
usnas.

Na figura 24 hi um exemplo de como pode ser implementado um controlador
através de redes neurais com duas camadas para sistemas nio-lineares.

Apos ser realizado o treinamento da rede, sdo estipulados bias € pesos fixos, ou
seja, os boxs referentes & tansig ¢ purelin possuem bias(bl e b2) ¢ pesos(wl ¢ w2)
fixos.

Essa rede ja fornece na saida valores para corrigir 0s erros. A entrada do
sistema ndo-linear ja ¢ um valor corrigido que fornecera na safda do sistema “antena-

model”o valor descjado.
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Figura 24 - Sistema controlado via redes neurais

A figura 25 mostra o grifico da resposta do sistema controlada ao redor do

valor de 90 graus.
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Figura 25 - Resposta controlada do sistema

Nota-se portanto que ¢é perfeitamente possivel implementar um controlador com

as fungdes de transferéncias ¢ algoritmos de aprendizado conhecidos fornecendo um

resultado satisfatorio.
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CAPITULO 8 : CONCLUSOES DO TRABALHO

1) Em tese as unicas informagdes necessarias para modelar um sistema via redes
neurais sio os valores de enfrada e saida. No entanto, possuir o conhecimento fisico do
sistema ¢ extremamente importante. Deve-se saber quais sinais de enfrada fazem
sentido para o estudo do sistema, ¢ além disso quat o campo de variag3o destes sinais,
Uma entrada mal dada pode induzir a rede a reconhecer aspectos que ela ndo deveria
reconhecer ¢ fornecer saidas diferentes das esperadas,.

Conhecer bem a dindmica de um sistema facilita muito o trabalho, por exemplo,
se soubermos de antemio de quantos estados anteriores depende o estado atual o
processo de modelamento sera muito mais rapido e preciso.

Em suma, o sucesso da modelagem via redes neurais estd intrinsicamente ligado
a uma boa massa de dados para aprendizado, ¢ uma boa massa de dados s6 € possivel

com © conhecimento fisico do sistema.

2) Além do sucesso das redes dependerem muito de quais sio as entradas dadas,
ha também a dependéncia de como sio dadas as entradas. Treinou-se a rede do motor
para um degrau sem ruido ¢ o emro de aprendizado foi da ordem de 10°. Quando
colocou-se como entrada um degrau um pouco diferente a rede ndo respondia bem.
Treinou-se entio a rede com uma entrada degrau com ruido. O erro subiu para 10,
Mas quando mudou-se o degrau a rede den uma boa resposta.

Enfim, hA um compromisso entre precisio ¢ alcangabilidade, ou scja,
dependendo do campo de variagdo das entradas que se deseja que uma rede neural

reconhega, ¢ necessario “abrir mio” da precisdao das respostas e vice-versa.

3) Na primetra modelagem do motor considerou-se que ele dependia somente de
duas eniradas anteriores e trés saidas anteriores, e o resultado foi que a resposta da rede
era bem compativel com a resposta do modelo. Numa segunda e definitiva modelagem
constderamos que ele dependia de quatro estados anteriores, além das trés entradas
anteriores, € os resultados foram ainda melhores.

No entanto, um aumento considerivel do nimero de entradas e saidas
anteriores faz com que o resultado piore,

Em suma, existe um valor 6timo do nimero de entradas e estados anteriores, de

acordo com o sistema modelado. O conhecimento do sistema para antever esses
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valores € bastante valioso, j& que ha uma economia do tempo que seria gasto caso fosse

utilizado o método de tentativas e erros.

4) A percepgdo de que a rede neural ¢ uma ferramenta muito poderosa na
identificagdo de pardmetros ¢ modelagem ficou bem clara. Talvez ndo seja “a solugio’
para estes problemas, mas com certeza é uma alternativa a ser muito considerada,
principalmente em sistemas altamente ndo-lineares cuja modelagem através de equagdes

fisicas torna-se extremamente trabathosas.

5) Ainda ha um grande campo de avango com relagdo ao estudo de modelagem
através de redes neurais com o propdsito de controlar a injegdo de combustivel. O
grande valor deste trabalho foi iniciar, abrir uma nova perspectiva de trabalho. E
interessante fornecer uma alternativa para tanto comparar como também para recorrer
caso oufras modelagens ndo tenham dado certos, principalmente por se tratar de um
sistema com caracteristicas de nfio-linearidade elevadas que exigem hipoteses
simplicadoras. Seria interessante a continuidade do mesmo, j4 que como foi citado

durante o trabalho, a perspectiva de alcangar um resultado 6timo € muito grande.

6) O proximo passo € a realizagio do controle do sistema. Possuindo informagdes
sobre as diferencas da relagdo ar-combustivel desejada e obtida pode implementar uma
rede neural para corrigir esta diferenga. Uma idéia seria utilizar como entradas da rede
os valores de entrada dos modelos ou do sistema e como saida a corre¢dio necessaria
para que a relagdo ar-combustivel seja a desejada.

O uso dos modelos se faz necessario ja que é dificil perceber ¢ medir em
laboratério as diferencas no transitério entre o valor estequiométrico da relagio ar-

combustivel desejada ¢ obtida.

7)  Os resultados obtido com as redes neurais, principalmente, para o caso do
motor foram muito satisfatérios, com erro aproximadamente zero para um amplo
campo de variagio da entrada degrau. Uma maior alcangabilidade ainda ¢ possivel
aumentando o ruido de entrada para o qual a rede neural é treinada, ou entio,
utilizando modelos multiplos nos quais cada modelo abrangeria um determinado campo

de valores e formas de entrada.

55



8) Um outro passo interessante, seria a utilizagio de uma rede neural nos moldes
da implementada neste trabalho, com o objetivo de modelar o conjunio motor-
dinamometro. Hoje, ja existe no IPT um modelo fenomenoldgico construido através de
equagdes fisicas para este conjunto. Na verdade, os modelos do dinamdémetro e motor
aqui utilizados foram agrupados num s6 modelo com resultados bem satisfatérios.
Poderia-se construit uma rede neural que utilize a massa de dados de entrada e saida
deste conjunto, tal iniciativa serviria para se obter uma alternativa de modelagem além
da realizada por equagdes fisicas, ja que como fora comentado durante o trabalho,

apresenta hipoteses bem simplificadoras, devido a alta nfio linearidade do sistema.

9) Pode-se buscar melhorar ainda mais os resultados do motor e principaimente do
dinamémetro, procurando um ruido de entrada que atenda ao compromisso
alcangabilidade/precisio desejado. Pode-se também mudar a realimentag3o (nimero de
entradas ¢ saidas anteriores informadas no aprendizado) e estrutura da rede(mais
camadas, mais neurénios em cada camada, fungbes de transferéncia, coeficiente de

aprendizado, pesos € bias iniciais, etc).

10) Espera-se que este trabalho contribua no desenvolvimento de um projeto maior que
¢ o estudo da utiizagdio do gis natural como alternativa de combustivel menos
poluente, além disso espera-se¢ que este sirva como material de auxilio para futuros

trabalhos tanto na area de modelagem e controle de sistema nio lineares.
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ANEXOS



ANEXO A) IMPLEMENTACAO DO PROGRAMA TESTE EM PASCAL
var
a,b,c,d,e,t : array{1..100] of real ;

ij : integer ;

delta , alfa,saida, threshold, dthreshold, dwa, dwb, dwe,dwd, dwe, wa, wb, we, wd, we : real ;
begin

a[l] = -0.7343

a[2] = -0.7944 ;

a[3] =-0.8276;

a[4] =-0.8454 ;

af5] =-0.8538 ;

a6l :=-0.8562 ;

a[7] :=-0.8542 ;

a[8] :=-0.8489 ;

a[9] =-0.8410;

a[10) =-0.8309 ;
a[ll] =-0.8191,
af12] :=-0.8060 ;
a[13] =-0.7920;
a[14] =-0.7774 ;
af15] =-0.7625,
af{16] :==-0.7476;
a[17] =-0.7329,
a[18] :=-0.7186;
a[19] = -0.7049;
a20} == -0.6918;
af21} = -0.6795,
a[22] =-0.6681,
a[23] :=-0.6575,
al24) :=-0.6477,
af25] =-0.6388,
a[26] = -0.6308;
a[27] = -0.6235;
a[28} = -0.6169,
af29] =-0.6111,
a[30] = -0.6059,
af31] =-0.6013,
a[32] = -0.5972;
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a[33] = -0.5936,
al34] = -0.5904,
a[35] = -0.5876;
af36] =-0.5852;
a[37) =-0.5831;
a[38] = -0.5812;
aj39} =-0.579¢6;
a[40] =-0.5782;
af4l} =-0.5770;
bf1] = -0.6185;
b[2] .= -0.4766;
b[3] == -0.3610,
bf4] == -0.2804;
b[5] = -0.2326;
b6] = -0.2117,
b[7] =-0.2117,

b[8] = -0.2273;
b[9] = -0.2540;
b[10] ==-0.2879,
b[11] =-0.3258,
b[12] =-0.3652;
b{13] =-0.4041,
b[14] =-0.4413;
b[15] = -0.4760;
b[16] :=-0.5077;
b[17] =-0.5364;
b[18] :=-0.5621,
b[19] =-0.5850;
b[20] = -0.6052;
b[21] = -0.6229,
b[22} :=-0.6385;
b[23] =-0.6522;
b[24] =-0.6641;
b[25] =-0.6745;
[26] = -0.6835,
b[27] = -0.6914;
b[28] = -0.6983;
b[29] :=-0.7042;
b[30] = -0.7054,
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b[31]} :=-0.7138;
b[32} =-0.7177,
b[33] :=-0.7211,
b[34] == -0.7240;
b[35] :=-0.7265;
b[36] =-0.7287,
b[37] =-0.7306;
bi38] =-0.7322,
b[39] = -0.7337,
b[40] :=-0.7349,
b[41] :=-0.7359,
c[1] = 0.3375,
¢[2] = 0.3176,
c[3]) = 0.2783;
c[4] = 0.2246;
¢[5} = 0.1606;
c[6}:= 0.0899,
c{7] = 0.0160;
c[8] = -0.0582,
¢[9] == -0.1302;
¢[10} :=-0.1982,
cf11] =-0.2608;
cf12] :=-0.3176;
¢[13} =-0.3683,
c[14] =-0.4131;
c[15] :=-0.4524;
c[16] = -0.4866;
c[17] =-0.5164;
¢[18] :=-0.5422,
c[19] :=-0.5644,
cf20] =-0.5837,
c[21} = -0.6003;
cf22] = -0.6146;
c[23] =-0.6270;,
¢[24] = -0.6376,
¢[25] :=-0.6468;
c[26] ==-0.6548;
¢[27] =-0.6616;
c[28) :=-0.6675;
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¢[29] = -0.6726;
¢[30] =-0.6770;
¢[31] =-0.6808;
cf32] :=-0.6841;
¢[33} = -0.6869;
¢[34] == -0.6894;
¢[35] == -0.6915;
¢{36] = -0.6933;
¢[37] := -0.6549;
c[38] = -0.6963;
c[39] = -0.6974;
c[40] = -0.6984;
cfd1] = -0.6593;

d[l] = 0.5314,
df2] = 0.6617,
d[3] = 6.7367;

d[4] = 0.7799,
d[5] = 0.8047:
d[6] = 0.8183;

dj7] = 0.8244;
d[8} = 0.8254;
d[9} .= 0.8225,

df10] := 0.8167;
df11] := 6.8086;
d[12] .= 0.7988,
d[13] = 0.7878;
df14} =0.7760,
d[15} =0.7636;
d[16] =0.7511;
d[17] =0.7385;
d[18] =0.7262,
d[19} =0.7142;
d[20] = 0.7028,
d[21] =0.6919,
d[22] =0.6817,
df23] =0.6721,
df24] =10.6633 ;
d[25} .= 0.6553,
df26] =0.6479,
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d[27] = 0.6412,
d[28] =0.6352,
d[29] :=0.6298,
d[30} :=0.6250 ;
d[31} = 0.6207,
d[32] =0.6169;
d[33] .= 0.6136;
d[34] = 0.6106;
d[35] = 0.6080;
d[36] = 0.6057,
d[37] = 0.6037,
d[38] :=0.6019;
d[39] := 0.6004;
df40] = 0.5991,
d[41] = 0.5979,
e[1] =-0.5424;
e[2] = -0.3841,
e[3] = -0.2539;
e[4] = -0.15%4;
e[5] = -0.0974;
ef6] = -0.0619;
e[7] = -0.0471,
e[8] = -0.0482;
e[9] = -0.0612,
e[10] =-0.0828;
e[11] =-0.1100;
e[12} = -0.1406;
e[13} =-0.1728;
e[14] =-0.2051;
¢[15] =-0.2365,
ef16] = -0.2664;
ef17] = -0.2945;
e[18] =-0.3204;
e[19] = -0.3441;
e[20] =-0.3657,
¢f211:=-0.3851;
ef22] =-0.4026;
ef23] =-0.4181;
e[24] =-0.4320,
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e[25] = -0.4442;
el26] :=-0.455}1,
2[27] = -0.4646;
e[28] =-0.4730;
e[29] = -0.4803;
e[30] == -0.4868;
ef311:=-0.4924,
e[32] =-0.4973;
e[33] .= -0.5016;
e[34] =-0.5054;
ef35] = -0.5086;
e[36] == -0.5114;
e[37] =-0.5139;
e[38] = -0.5160;
e[39] =-0.5179,
ef40] =-0.5195,
e[41] =-0.5209,
t[1] = 0.081%;
t[2] = 0.6337,
3] = 1.0462,
tj4] = 1.3404,
5] = 1.5412;
6] = 1.6703;
7] = 1.7440;
t{8] = 1.7741,
9] = 1.7701,
t{10] = 1.7399,
t[11] = 1.6904;
t[12] = 1.6277,
t[13] == 1.5565;
t[14] = 1.4810;
t[15} ;= 1.4040;
tf16] = 1.3277,
17} =1.2537,
t[18] = 1.1830;
t[19] =1.1162;
20] =1.0539,
21] :=0.9962;
122] .= 0.9432;



[23] = 0.8948;
1[24] := 0.8509,
t{25] =0.8112,
t{26] = 0.7756;
t[27] = 0.7437,
t[28] = 0.7153,
129] := 0.6900;
t[30] = 0.6677,
t[31] = 0.6480;
t]32] .= 0.6306;
[33] =0.6153,
t[34] = 0.6019;
t{35] = 0.5902,
t[36] = 0.5800;
t[37] =0.5710,
{38] :=0.5632;
1[39] = 0.5564;
{40} .= 0.5505,
t{[41] = 0.5454,

{* CONDICOES INICIAS *}
wa:=-28,;

wb =126,

we . =-0.71,

wd:=115;

we =-0.315;

alfa = 0.15;

threshold .= -0.5 ;

saida =0,

{* ITERACOES *}
for j =1 to 15000
do begin
fori:=1to 41
do begin
saida = afi]*wa + b[i]*wb + c[i]*wc + d[i]*wd + ¢[i]*we -threshold ;
delta := t[i] - saida ;
if j = 14999 then begin
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writeln (saida) ; writeln (t[i]) ; writeln (delta) ; writeln ; readln ;
end ;
dwa = alfa*ali]*( t[i] - saida };
dwb = alfa*b[i]*( t[i] - saida ) ;
dwe = alfa*c[i]*( t[i] - saida ) ;
dwd = alfa*dfi}*( t]i] - saida ) ;
dwe = alfa*e[i]*( t[i] - saida ) ;
dthreshold := -alfa*( t[i]- saida ) ;
wa ;= wa + dwa ;
wb :=wb + dwb ;
we = we + dwe ;
wd =wd + dwd ;
we = we + dwe ;
threshold := threshold + dthreshold ;
end ;
end ;
writeln (wa) ; writeln(wb) ; writeln(wc) ; writeln(wd) ; writeln(we) ; writeln(delta) ;
readin ;

end
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ANEXO B) IMPLEMENTAQ&O NO MATLAB DOS PROGRAMAS DE
TREINAMENTO E SIMULACAO DAS REDES DO MOTOR E DO
DINAMOMETRO

REDE NEURAL DO MOTOR

* TREINAMENTO DA REDE *

entradal = acel ; * variagio no dngulo da borboleta *

entrada? = comba ; * vaziio de combustivel *

target]l = pressao ;  * pressdo no coletor o

target? =n; * rotagdo do eixo *

entrada=[entradal entrada2];

target=[target1 target2];

u=[entradal’; * transposto da entrada ¥

t=[target]"; * transposto do target (saida ) *

pl=delaysig{u,0,3); * pl € uma matriz que contém a entrada atual e trés anteriores *
p2=delaysig(t,1,4); * p2 € uma matriz que contém 3 saidas anteriores ¥
p=lplip2];

[wl,bl,w2,b2}=mitf(p, 8, tansig',t,'purelin");
tp=[25 100 0.0001 0.01] ;
fwl,bl,w2,b2,te,tr]=trainlm(w1,b1, tansig’,w2,b2, 'purelin’, p,t,ip) ;

* SIMULACAO DA REDE *
pp1=pl(;,1);
estados=zeros(2,2000);
for i=4:2000,
if i=4,
estado=simuff{[pp1;[0;0;0;0;0;0;0;0]],w1,b1, tansig’, w2,b2, ‘purelin’) ;
clse
* este bloco faz a realimentagio da saida *
estado=simufl([pp1;[estados(:,i-1);estados(:,i-2);estados(:,i-3);
estados(:,i-4)]],wl,b1, tansig’, w2,b2, purelin’) ;
end;
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estados(:,1)=estado;
clear ppl ;
pp1=pl(;D);

end;

REDES NEURAIS DO DINAMETRO

REDE 1 (ROTACAQ)

* INICIALIZACAO ( Coloca os valores de entrada e saida na mesma escala: 10™ )*
entradal=wref;

entradal=entradal(1000:3000);

targetl=w/1000;

target] =target1(1000:3000);

* TREINAMENTO DA REDE *
entrada=[entradal};

target=[targetl];

u={entradal’;

t=[target]’;

pl=delaysig(u,0,4);

p2=delaysig(t,1,4);

p=[p1;p2];

fw1,bl,w2,b2]=initff{(p, 6, tansig',t,'purelin’);
tp=[10 50 0.00001 0.01] ;
[wl,bl,w2,b2,te,tr]=trainlm(w1,b1, tansig',w2,b2, 'purelin’,p,t,tp) ;

* SIMULACAQ DA REDE *
ppl=pl(,1);
states=zeros(1,2000);
for 1=4:2000,
if i==4,
state=simuf¥([pp1;[0;0;0;0]1},w1,bl, tansig’, w2,b2,'purelin’) ;
else



state=simuff{[pp1;[states(:,i-1);states(:,i-2);states(:,i-3);states(:,i-4)]],w1,bl,
'tansig’,w2,b2,'purelin') ;
end;
states(:,iy=state;
clear ppl;
ppi=pl(.i);
end;

REDE 2 ( ESPESSURA DO FILME DE AGUA NA CAMARA)

* INICIALIZACAO ( Coloca os valores de entrada e saida na mesma escala: 107 y*
entradal=wref;

entradal=entradal(1000:3000);

target2=dR*10;

target2=target2(1000:3000);

* TREINAMENTO DA REDE *
entrada=[entradal];

target=[target2];

u=[entradal';

t=[target]’;

pl=delaysig(u,0,3);

p2=delaysig(t,1,5);

p=[p1;p2];

[wi,bl,w2,b2]=initff(p, 5, tansig',t,'purelin’);
tp=[10 50 0.00001 0.01] ;
[w1,b1,w2,b2,te,tr}=trainim(w1,b1, 'tansig’,w2,b2, 'purelin’,p,t,tp) ;

* SIMULACAO DA REDE *
pp1=pl(;1);
states=zeros(1,2000),
for 1=5:20040,
if 1==5,
state=simuff{[pp1;[0;0;0;0;01],w1,bl, 'tansig’, w2,b2, 'purelin’) ;
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else
state=simuff([pp1;[states(;,i-1);states(:,i-2);states(:,i-3);states(:,i-4);states(.,i-5)]],wi,bl,
'tansig’,w2,b2,'purelin’) ;
end;
states(:,1)=state;
clear ppl;
pp1=pi(.i);
end;

REDE 3 ( ANGULO DA VALVULA)

* INICIALIZAGAO ( Coloca os valores de entrada e saida na n;esma escala: 107 y*
eniradal=wref;

entradal=entradal(1000:3000);

target3=alfa*0.1;

target3=target3(1000:3000),

* TREINAMENTO DA REDE *
entrada=[entradal}l;

target=ftarget3];

u=[entrada]’;

t=[target]’;

pl=delaysig(u,0,3);

p2=delaysig(t,1,5);

p=[p1;p2];

[w1,b1,w2,b2]=initff(p, 5, "tansig’,t,'purelin’);
tp=[10 50 0.00001 0.01] ;

[w1,b1,w2,b2,te, tr]=trainlm(w1,b1, 'tansig', w2,b2, ‘purelin’,p,t,tp) ;

* SIMULACAO DA REDE *
ppl=pl(;1);
states=zeros(1,2000);
for 1=5:2000,

if i==5,
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state=simuff{[pp1;[0;0;0;0;0]],w1,b1, tansig’,w2,b2, purelin’) ;
else
state=simufi([pp1;[states(:,i~1);states(:,i-2);states(:,i-3 );states(:,i-4);states(:,i-5)]],wl,bl,
'tansig’,w2,b2,'purclin’) ;
end;
states(;,iy=state;
clear ppl;
Pp1=p1(;i);
end;
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ANEXO O)EXPLICACOES A RESPEITO DAS FUNCOES PRE-DEFINIDAS
UTILIZADAS NOS PROGRAMAS

. delaysig (x,a,b) : dado um vetor x esta fungdo cria uma matriz onde cada hinha
representa um instante no tempo. Por exemplo se a=0 ¢ b=2, a fungao vai criar uma
matriz onde a primeira linha ¢ uma réplica do vetor x significando o instante atual, ¢ as
outras duas linhas s3o formadas atrasando o vetor x 1 instante ¢ 2 instantes no tempo.E
esta fungio que permite atrasar no tempo as entradas e as saidas de maneira a
proporcionar o aprendizado da rede.
. [wl bl w2 b2]=iitiff(entrada,n,fl,target,f2) : a fungio initiff faz o setup para uma
rede com duas camadas, determinando a quantidade de pesos e bias da primeira e
segunda camadas em funcio dos vetores de entrada e target, inicializando os pesos ¢
bias (w1 bl w2 b2) aleatoriamente mas dentro de um certo campo de variagio, criando
fungdes de transferéncia f1 ¢ f2 para a primeira e segunda camadas respectivamente, ¢
gerando n neurdnios na primeira camada.
.tp=[a b c d] : Este vetor entra como pardmetro para o algoritmo de aprendizado

a ¢ o intervalo em que se deve mostrar a queda do erro quadratico ;

b ¢ o nlimero maximo de iteragdes ;

c € o limite de erro quadritico que se descja atingir;

d € o coeficiente de aprendizado
. trainlm : esta funcgio faz o treinamento de uma rede através do algoritmo de
Levenberg-Marquardt.
. simuff(p,w1,b1,f1,w2,b2,f2) : esta funcio simula uma rede neural de duas camadas
onde : a primeira camada possui uma matriz de pesos igual a wl, um vetor de bias igual
a bl e fungio de transferéncia igual a f1;

a segunda camada possui matriz de pesos w2, vetor de bias b2 e fungio de
transferéncia f2;

a simulag@o é feita para um vetor de entrada igual a p. Se y = simuff entfio y

contém o vetor de respostas desta rede para uma entrada igual a p.
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